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Of the various unsteady flows that occur in axial  turbomachines certain asymmetric 
disturbances, of wave length large in comparison with blade spacing, have become understood 
to a certain extent. These  disturbances divide themselves into two categories : ‘self-induced 
oscillations and forced disturbances. A special  type of propagating stall appears as a self- 
induced disturbance ; an asymmetric velocity profile introduced at the  compressor inlet  
consti tutes a forced disturbance. 

Both phenomena have been treated from a unified theoretical point of view in  which the 
asymmetric disturbances are linearized and the blade characterist ics are assumed quasi-steady. 
Experimental results are in essential  agreement with this theory wherever the limitations of the 
theory are  satisfied. For the self-induced disturbances and the more interesting examples of the 
forced disturbances, the dominant blade characterist ic is. the dependence of total pressure loss, 7 
rather than the turning angle, upon the local blade inlet angle. 
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I - INTRODUCTION 

me occurrence of s t a l l  propagation in axial  compressor blade rows is now well known and 
has been widely observed. It is understood-to take place when the flow inlet angle t o  a com- 
pressor stage lies in a certain range in the.neighborhood of the angle for which steady stall 
should be observed. As the inlet angle is increased a s ta l l  region occurs covering a group 
of blades and, instead of remaining with the same group of blades,. moves circumferentially 
about the blade row. The properties of this stall a re  self induced in the s e n s e  that they are  
in no way a response to other disturbances introduced into the  compressor. Of particular 
interest here a re  i )  the conditions under which such a self-induced disturbance is possible and 
i i )  the propagation speed, amplitude and wave length of the stall region. 

A second type of unsteady s t a l l  that exis ts  in axial  compressors is of different origin and, 
superficially, is quite distinct from s t a l l  propagation. This type of s ta l l  takes place in a 
compressor rotor in response to a strong circumferential distortion of the axial  velocity profile 
introduced a t  the inlet. Here the s ta l l  region is forced to remain stationary with respect to the 
compressor casing. The points of particular interest here are  i)  the magnitude of disturbance 
required to  induce s ta l l  and ii) the progression of this stall through succeeding blade rows 
with special  regard to whether the distortion is smnothed out or retains a finite amplitude 
through the compress or. 

The mechanism of s t a l l  propagation has  been investigated extensively from both theoretical 
and experimental points of view. The  analytical work has,  for the most part, heen c~nflnec! re 
small disturbance theories in which the amplitude of the s t a l l  and of-flow angle perturbations 
are  assumed small. Various approaches to the smalI perturbation theory have been proposed by 
H.W. EMMONS [1], W.R. SEARS [2], and F.E. MARBLE [SI ; these theories have been reviewed, and 
to  s o m e  extent compared by W.R. S E A R S  , reference [41. In al l  compressor experiments 
reported t o  the present t i m e  the s ta l l  amplitude appears to be outside the realm of linearized 
theory. Interesting and bold approaches to a non-linear theory have been proposed recently 
by A.R. KRIEBEL [SI and J .  FABRI and R. SIEsTRUNCK [61. In contrast to t h e  linearized . 
theories that assume infinitesimal disturbance in the s ta l l  wake, these investigators assume ..- 
the  fluid in the  wake to be nearly stagnant, an  approximation that appears to be reasonably well 
confirmed by experiments. The price paid for non-linearity is, of course, the inability to compute 
details  of the flow field. F A B R ~  and SIESTRUNCK [GI, in particular, seem to have reduced the 
statement of the problem to  a minimum of assumptions. 

The effect of circumferential distortion to the inlet  velocity profile, although of considerable 
practical interest  in connection with installation of aircraft g a s  turbines, has not yet been the 
subject of any analytical publications. The only work known to  the authors is that of Dr. F.F. 
EHRICH contained in a personal communication. 

It is the purpose of the present pap.er to show that these two diverse phenomena, stall 
propagation and circumferential distortion of the inlet velocity profile, may be treated within 
a common framework. A s m a l l  perturbation theory is developed whose foundations differ in one 
essent ia l  aspect from previous theories : the mean turning angle through the blade row may be 
large. In this theory the propagating s ta l l  appears a s  a self-induced disturbance or "natural 
oscillation 'I, the propagation speed is the characteristic value or "natural frequency", and the 
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effect of an inlet distortion appears a s  a forced disturbance or a ‘‘forced oscillation”. 
Experiments were made with propagating s ta l l  in a stationary annular cascade in which blade 
solidity and stagger angle were varied. Using this equipment small  amplitude s t a l l  was observed, 
satisfying the assumptions of the linearized theory. These experimental results are compared in 
detail  with theoretical calculations. Experiments on the effect of inlet distortion were made 
using a three stage low speed compressor. The experimental resul ts  are compared qualitatively 
with the corresponding theoretical calculations. 

The experiments on s ta l l  propagation quoted herein were performed by M. David BENENSON 
and the experiments on inlet distortion were performed by M. Robert K A T Z ,  both in connection 
with their doctoral thesis at the California Institute of Technology. The  authors are grateful 
for permission to quote these data at this Time. 
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FIG.  1 - D I A G R A M  I N D I C A T I N G  C O O R D l N A T E S  A N D  N O T A T I O N  F O R  S E L F  I N D U C E D  
O R  F O R C E D  D I S T U R B A N C E  F I E L D  N E A R  A S I N G L E  B L A D E  ROW. 
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I1 - THE D ~ S T U R ~ A ~ ~ ~  FLOW FIELD 

Let x ,  y be rectangular coordinates with the axis  of y parallel to the cascade axis, Figure 1. 
The average velocity components and pressure are  u ,  V and P, all constant between any blade 
rows. The disturbance velocity components and pressure a re  u ,  u and p ,  all with average values 
zero. The disturbance is assumed periodic in the y-direction and travels with a velocity V ,  in 
the y-direction. The wave length of the djsturbance is assumed large compared with the blade 
gap so the distortions produced by individual blades on the disturbance pattern a re  ignored even 
when there is relative motion between the disturbance and the cascade. Under these cir-  
cumstances the disturbance flow is steady in a coordinate system moving with the disturbance. 
For s m a l l  disturbances the equations of motion in linearized form are  

The  equations above are equivalent to  the following three, more significant equations : 

(2.2) 

The first  of these is the condition that the perturbation of total pressure is constant along the 
mean stream lines in the moving system. The second two equations show that the combination 
U v - ( V -  V,) u, (proportional to flow angle perturbation) and the s tar ic  pressure divided by 
density are  potential functions and sat isfy the Cauchy-Riemann conditions. For  simplicity of 
analysis  it is convenient to  introduce the definitions 

(2 .5)  

(2.6) UU -(V-V,>u = F .  

P - +  U U  +(V-V,)v  = H .  
P 

P 
-= G .  P (2.7) 

Then the following relations hold 

(2.8) 

and two functions only are required t o  define the disturbance flow completely. For a serni- 
infinite flow field upstream or downstream of a blade row the functions 
particularly simple terms. F and G approach zero far from the cascade and if 
at x=O,  then for F ( 0 ,  y )  given, G ( 0 ,  y )  can be found from 

(2.10) 
1 

G ( O , y )  = _ + s F ( O , ? )  c o t n  ( y - q )  dq =-t F*@, y ) ,  x>O 
0 

can be given in 
the blade row is 
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and similarly 

where the wave length i s  unity. F and G may be found for all values of x and y if F (0, y) 01 

G ( o , y )  is given. Hence the disturbance flow is described completely by H ( 0 ,  y )  and F ( 0 , y )  
or G(0 ,  y). 

For a finite region between two blade rows the prescription of the disturbance flow is 
somewhat more involved, but it can be done in terms of values of 0, F and G along the s i d e s  
of the region. 

F ( O , y )  =T G*(O,y) x p  0 

III - FtlATCHINC C O ~ ~ ~ T ~ ~ S  OVER THE BLADE ROW 

The wave length of the disturbance has  been assumed to be large compared with the blade 
gap  so that  the local inlet conditions at any particular blade channel can be assumed constant 
across  the channel at any instant and to vary slowly with t i m e  if  the velocity of the disturbance 
relative to the cascade is not very large. The flow is assumed locally quasi-steady. Three 
conditions relating to conservation of m a s s ,  momentum and energy can be prescribed to give 
the local outlet flow in terms of Iocal inlet flow. For finite axial 'projection of the cascade 
there is a shift of the mean stream lines from inlet to  outlet, but this is constant along the 
cascade and can be ignored unless  actual stream lines are  required. 

Let U ,  VI, PI be the average velocity components and pressure upstream of the cascade 
and U ,  V ,  P2 the corresponding values downstream. Let the perturbation values immediately 
upstream and downstream be ul, vl, p1 and up v 2 ,  p2 respectively. The continuity condition for 
stator or rotor is Simply 

s ince  the average axial  velocit ies are the s a m e  upstream and downstream. 
u = u  (3.1) 2 1  

Let the inlet angle of the flow relative to the cascade be p, and the outlet angle p2 both 
angles measured f rom the axial  direction. Then very generally 
(3.2) 
where R is a prescribed function of tanP1 as indicated in Figure 2. For high solidity (constant 
leaving angle), R = O  ; for local flow satisfying the conditions for irrotationality R = K tan PI. 
The  momentum equation (3.2) can be given in terms of lift coefficient as  well although the 
present form is usually more convenient. 

The energy condition over the cascade can be taken as a total pressure loss, proportional 

tan p, = A -I- R ( tanpl>  

to the square of the local inlet velocity and to a function of tan pl, i.e. 

(3.3) Apt = p ( U  + u1l2 P (tan p,) 
where P is a prescribed function shown schematically a l so  in Figure 2. It is assumed that the 
functions R (tan PI) and P (tan p,) are single-valued functions, i.e. no t i m e  lags or hysterisis 

In most of the calculations to follow, the outlet angle will be taken as constant;  under 

loops. 

these circumstances 

( 3.4) -- - tan p2 = cons t. v 2  + v2 

u +u, 
for a stator blade row, and 

(3.5) 
v , -v2-  

u + u2 v2 = t a n P 2  = const. 
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for a rotor blade row. Hence 

4 .  

(3.6) 

(3.7) . 

u2 (stator). v2 = - 
U 
y* 

u2 (rotor). 7 - v 2  v =-- 
U 2 

The right hand side of Equation (3.3) can be expanded in terms of the disturbance velocities 
i.e., for a stator f 

1 u2 (5) + 2 U P p . )  u1 + P p )  ( U U l  - v, ul) + ... 
U U U 3 Apt = 

and a very similar expression for a rotor. 1 

I - GEOMETRIC O U T L E T  

I 

FIG.  2. - B E H A V I O R  O F  B L A D E  O U T L E T  A N G L E  DEVIATION A N D  T O T A L  
P R E S S U R E  LOSS AS F U N C T I O N S  O F  B L A D E  I N L E T  A N G L E .  

For m o s t  calculations i t  is more convenient to have the matching conditions in  terms of the 
functions F ,  G and H introduced previously. Expressing u l ,  v , ,  u2, up and Apt in this  way, the 
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As =-- V I  P,' 
U 

vf - v; 
2 Ps + P,' 3s = ---- 

U!VS vs 

for a stator blade row and 

for a rotor blade row. 

Let u s  suppose that uniform flow approaches an isolated stator blade row at the plane x = O .  
Since H , ( z , y ) = O ,  the conditions that a self induced disturbance ex is t s  are given by the first  
two Equations (3.8) i.e. 

(4.1) 
G, - G, + As F ,  + Bs F2 = 0 

G, + as F ,  + as F2 = 0 

where the arguments (0,  y )  can be dropped without confusion. Taking conjugates 
equations by the rules given in Equation (2.10) two further independent equations 

of these" 
a re  found 

F , + F ,  - A s G G , + B s G 2 = 0  
F ,  - as G, + ps G2 = 0 

(4.2) 

Eliminating F,  and G2 

(4.3) 

The conditions for a non trivial solution of these last two equations are  that the coefficients 
of F ,  and G, vanish 

(4.4) 

(as -ps - B,) Fl i- (1 i- 13, As -as B,) G, = 0 

As -as Bs) F ,  - (as -13, -Bs)G, = 0. 

as - 6, - 3, = 0 

1 + & A s  -asps =O.  
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Substituting for the coefficients as , p, , As and Bs from Equation (3.81, these last two conditions 
are equivalent tv 

(4.5) 

(4.6) 

' % ' - 2 P s  V =(1+$). 
U 

y s l  _ -  --Ps'. 
u 2  

The left hand s ide  of Equation (4.5) is a function of v1/u since P, and %' are  functions of 
this  quantity;  the right hand s ide  is constant. One would expect the.variation of P, as a function 
of V,/U to be of the form shown in Figure 2, that  is P, quite s m a l l  over a limited range of inlet 
angle, then r i ses  sharply as the cascack stalls positively or negatively. Under these circum- 
s tances  there will be generally one and only one value of V,/u at which Equation (4.5) is 
satisfied. It will occur at the positive s ta l l  condition. Hence a self induced disturbance can 
occur at only one value of the upstream flow angle. 

The second Equation (4.6) must be satisfied simultaneously and gives a unique propagating 
speed if Equation (4.5) is satisfied. The amplitude and shape of the self-induced disturbance 
are not determined by the linearized theory, and s ince  there is no control over the disturbance 
shape, the theory is applicable only for those experiments where the conditions of the theory 
are satisfied.  The  propagating speed should be compared with. propagating s ta l l  observations 
only i f  the wave length of the disturbance is large compared with the blade gap, the velocity 
fluctuations a re  s m a l l  in comparison with U and the leaving angle from the cascade  is constant. 

T h e  theory above applies to self-induced disturbances on a fixed stator. Obviously the s a m e  
theory applies to  a rotor; it is merely necessary to add a uniform velocity y ,  the rotor speed, 
to the entire system. In the theory so far, it h a s  been assumed that the leaving angle from the 
cascade is constant. If leaving angle deviations are  taken into account as well as  total pressure 
l o s s e s  the two conditions for a self induced disturbance become 

(4.7) 

(4.8) 

where R,' is the local slope of the deviation angle curve as indicated in Figure 2. If Ps EO, it 
appears that solutions of these equations do not occur for any realist ic variations of R, with 
q / U .  Hence it is unlikely that a self-induced disturbance resulting from leaving angle deviations 
alone can occur. It may be that leaving angle deviations can modify the self-induced disturbanfes 
that result  primarily from the total pressure loss characterist ics of the cascade. 

The simplest  example of an asymmetric forced disturbance resul ts  from a distorted inlet 
flow approaching an isolated rotor. Here the upstream disturbance is taken as a weak shear  
disturbance, fixed in space with the rotor passing through it. Hence the disturbance speed V, 
is zero. The non-uniform inlet angles relative to the rotor produce variations on <ne moving rotor 
that  induce additional regular disturbances upstream and downstream and in turn affect local 
inlet angles. These induced disturbances are of the type described by the F and G functions, 
hence sat isfy Laplace 's  equation and die out upstream and downstream for an isolated blade 
row. 
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In the problem as formulated above, N , ( x ,  y)  is given by the conditions far upstream, and 
we wish to find the disturbed flow resulting from the interaction of this  non-uniformity with the 
rotor, and in particular the total  pressure variation downstream. The  f i rs t  two of Equations 

(5.1) 

(5.2) 

where vs=O for a stationary disturbance. The complementary equations to  these  two, from the 
operation (2.10) are 
(5.3) F,  + F2 - Arcl + B, G, = O 
(5.4) F, - U, G+ + 13, G, = H:. 
The Four Equations (5.1) to (5.4) are sufficient to determine F,, F2x G, and G, a s  linear 
expressions in H, and fi;. Then H2 can be found from the expression ( see  Equation (3.9)) 

where K ,  and E, are rather lengthy aIgebraic functions of A,, B,, ar and p,. Substituting for 
the latter from Equation (3.9) 

(3.9) are  
GI - G2 + A, F, + B, F, = O 

G, + g F, + P, F2 = H,, 

5,5 H ,  = G, + yr F,,= K ,  n, + K ,  H;. 

(5.6) 

1 + 2 - Y V  Pr - .J .(I - tan2 p, - 2 tan e, tan p,> 
u u  

-(1-tano2 tanp , )  4 P r 2 +  tan@, - Prr2 -2 -L + Pr'Pr [ U (; ) 
- 1 (1 + Sec'p,) + tan p,(tan Q~ tan p,+ tan2P2 P; 

+ 2 Sec2p2 + tan 0, t anp ,  + tan2P2 

1 
1 I 

where 

7-1 t anP,  = - Vl tan 0, = - 
U U 

V 7-42 t a n 8  =-1 tan@, = - * u .  , U 
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(5,6 cont'd) 
I pr 

+ 2 Sec2 0, + tan 6, tan p1 + tan' /3, I 
V 2  

+ { Z  -$--- 1 + S e ~ ~ @ ~ ( t a n 6 ~ t a n P ~ + t a n ~ P , )  

+ (1  -tan 6, tan P 2 )  PrI2 + 2 Pr 91-1- ( 2 - g: + tan2@,- tan"pJ e' 
v v  
u u  - 2 2 Pr +L (1 -2 tan 61 tan pl -tan2@, ) 

4' +Sec2@2Pr++ +- 1 U 4 

V ,  Sec2 p, tan p, 
1 p i 2  - tan P,' -( i+ 2 

The  coefficients Pr and 9' occurring in Equation (5.6) for I<, and A, are presumed known 
functions of ( V r - V 1 ) / U  and will behave as shown schematically in Figure 2. For disturbances 
of moderate amplitude it would be necessary to  u s e  mean values of Pr and Pr', to give the besr  
linear representation of the curve between the amplitude l imi t s .  If the rotor were operating at  
the design value of V , / u  and hence close to the stall ,  moderate disturbance amplitudes might 
give large values of the mean slope of the loss curve p-', although P, might not be large. Hence 
for the most interesting applications of the theory, the slope of the lbss curve appears to be the 
most important blade characteristic, as was found for self induced disturbances. 

VI - A X I S Y M ~ ~ E ~ ~ i ~  DISTBJ BANCES IN ICIULTIPEE BLADE ROWS 

The general theory for blade rows with finite spacing follows directly from successive 
applications of the resul ts  of Sections I1 and 111. The analysis  leads  to such involved 
expressions in general that it is probably not very useful. Introduction of the trigonometric 
functions for F and G simplifies the analysis  appreciably. Suitable forms are 

F = ( A  eZnnx + B e - 2 n n x  
(6.1) G = ( - A  e 2wnx + e-2nnx 

Even more drastic simplification is possible  for the Txial gap dimensions that occur in most 
compressors. The theory is restricted to disturbance wave lengths large compared with the 
cascade blade gap. The axial  gaps are ordinarily even smaller, s o  that the variation of the 
exponential factors in the expressions (6.1) from one s ide of the gap to the other will usually 
be negligible. Hence F and G are described sufficiently well by four constant factors multiplying 
the s i n e  and cosine terms. 

cos 2 nn y -t ( C e  + D e-2nnx ) sin 2 n n  y 
- 2nnx s in  2 n n y  + ( C e P n n x  - D e  ) cos 27rny. 
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As a specific example suppose one i s  dealing with a rotor followed by a stator far away 
from other blade rows, and that a stationary sinusoidal shear disturbance is introduced far  
upstream. If subscripts 1, 2 and 3 represent the regions upstream of the rotor, between rotor 
and stator, and downstream of the stator respectively, and if the rotor i s  at x = O ,  the  s ta tor  
at x = a ,  the  F and G upstream of the rotor a re  of the form 

(6.2) 
F ,  = Aleznnx cos  2 n n y  + C l e Z n n x  sin 2 n n y  
G 1 = - A , e Z n n x  s i n 2 n n ~ + C , e ~ ~ ~ ~  c o s 2 n n y  

and downstream of the s ta tor  
F ,  = 63e-2nn(x-a) cos 2 n n y  + D,e -2nn h - a )  sin 2 n n y  

G, = R, e-zmn ( x - a )  sin a n n y  - D, e-Znn (%-a) c o s  2 nny. (6.3) 

Between the blade rows the F and G are  of the form (6.1) with subscript  2. In addition H,(O,y), 
/I, ( a ,  y) and H3(u, y) each require two coefficients for complete description of their sinusoidal 
character. IIence there a re  fourteen unknown coefficients. The  three matching conditions over 
each blade row, Equations (3.8) and (3.9) supply twelve equations, s ix  for s ine  terms and s ix  
for cosine terms. The condition that the total pressure disturbance is constant along the mean 
stream lines gives 

(6.4) 

and this  g ives  two more equations, one for the s ine  term and one for the cosine term. FIence the 
entire disturbance flow f ie ld  can be found. Addition of success ive  blade rows downstream 
introduces a s  many new equations a s  new unknown coefficients. 

The form of the resul ts  for even two blade rows  i s  very-involved and clumsy unless the 
blade gap IS very small, when considerable simplification occurs. The importance of an  axial  
gap that is small  compared with the disturbance wave length is that the stator rows can play an 
important role in  the total pressure variation through success ive  rows. If a stator row i s  far  
downstream of a rotor row, the angle fluctuations of the disturbed flow will have vanished, s ince  
F approaches zero. Eience no appreciabie change i n  total pressure will occur through the stator. 
If the s ta tor  is close to  the rotor, i t  will be within the range of influence of the angle 
disturbances downstream of the rotor and may produce large variations of total pressure i f  near 
the stall. 

- 

The possibil i ty of self-induced disturbances in  multiple blade rows has  been given 
preliminary examination. For a single blade row it h a s  been shown that a self-induced 
disturbance is possible only at a particular upstream inlet angle. Fo. multiple blade rows the 
self-induced disturbance can  occur only at a particular approach angle for the stator and at a : * 
particular approach angle for the  rotor simultaneously. In  general such coincidence would not 
occur, although i t  should be possible to arrange it by appropriate blade setting. Evidently for 
multiple blade rows the forced disturbance is of much greater practical importance than the 
self induced. 

The theory of small amplitude self-.induced disturbances as  given above was developed 
some t i m e  ago.It is somewhat more general than that given by MARBLE [31 and SEARS [Z] but is 
essential'ly the same in principe. h4ARBLE had developed the theory based on a particular shape 
of disturbance and both he and SEARS restricted the theories to small  turning through the 
c a s c a d e .  Both made comparison with experiments on propagating s ta l l ,  bue i t  was not fully 
realized at the t i m e  that rhe observed s ta l l  was of very large amplitude and in  th i s  s ense  did 
Rot fit the assumptions of the theory. 
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Apparently David BENENSON,  a graduate student a t  the California Insti tute of Technology, 
was the first  to find a clear example of a small disturbance propagating stall .  He made observ- 
ations of an annular stator cascade of hub ratio 0.8 with a blade solidity of about unity in the 
first experiments. There were 60 blades in the cascade and he found a disturbance with velocity 
fluctuations near the cascade of amplitude 7 to 10 per cent of the mean velocity upstream. The 
disturbance upstream was approximately a s ine  wave of wave length equal to the annulus 
circumference. In the experiments the upstream flow direction w a s  fixed and the blade pitch 
varied. According to  the theory the disturbance should occur at one particular blade angle, but 
it was found over a small range of blade angles. 

The  conditions of the linearized theqry were m e t  in these experiments, and it was not 
surprising that the observed propagating speed a l so  agreed in a very satisfactory manner. In the 
theory it was assumed that the term 2 9  w a s  s m a l l  in comparison with (V,/U)Ps'in Equation 

(4.5) so that I f 2  

(7.1) 

' 1 + 7  ' 2  

!&L ~. U 
u 2 VI - 

U 
This  formula is very convenient s ince detailed knowledge of the variation of P, with Vl/L' is 
not required, but i t  should not be used as if V , / u  were a variable. The approximate form (7.1) 
underestimates the propagating speed s ince the term (u /v , )P  is neglected on the right hand side. 

The observed s ta l l  speeds are compared with theoretical values from Equation (7.1) in 
Figure 3. The outlet angle corresponding to tan-'(Y2/U) was measured as the blade angles were 
changed. The theoretical propagating speed is somewhat too low as would be expected. Observ- 
ations were made at reduced solidity a s  well and it w a s  found that the range of blade angles in- 
which propagating s ta l l  occurred decreased and no self  induced disturbances wera found below 
a solidity of 0.5. Certainly the leaving angle fluctuations m u s t  increase as the solidity is 
reduced and these would tend to become more important than the losses  in their influence on 
the self induced disturbances. I t  has been pointed out in Section I\: that i t  woii!d be difficult 
to explain propagating stall in terms of outlet angle variation alone. The experiments with 
varying solidity seem to confirm such a conclusion. 

FIG. 3 - C O M P A R I S O N  O F  T H E O R E T I C A L  S T A L L  P R O P A G A T l O N  S P E E D  
W I T H  P R O P A G A T I O N  S P E E D  O B S E R V E D  IN A N N U L A R  C A S C A D E .  
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BENENSON found another example of s m a l l  amplitude self induced disturbance in an isolated 
stator b!ade row is a compressor with hub ratio 0.6. The disturbance amplitude was again 7 to 
10 per cent of the mean velocity but the disturbance wave length was only four or five t imes the 
blade gap. There were 32 blades with seven or eight sinusoidal waves around the annulus. T h e  
disturbances were somewhat irregular, perhaps because the appropriate conditions were not m e t  
along the entire blade length. A comparison of a theoretical point (from Equation (6.1)) with the 
observed stall speeds is made in Figure 4 and even here the agreement is good. Because of the 
short disturbance wave length, however, this example is not as convincing a s  the previous one. 

0.6 

0.5 

0.4 
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FIG.  4 - C O M P A R I S O N  O F  T H E O R E T I C A L  S T A L L  P R O P A G A T I O N  S P E E D  W I T H  
P R O P A G A T I O N  SPEEDS O B S E R V E D  I N  S I N G L E  S T A G E  COMPRESSOR. 

The self induced disturbances described above should not be confused with the large 
amplitude propagating stall most commonly observed in s ingle  and multistage compressors. 
Apparently they are two dis t inct  phenomena, or at least are produced by quite different blade 
characteristics. The large amplitude propagating stall is characterized by disturbance velocit ies 
that are  invariably as large a s  the mean stream Telocity. The edges of the s ta l led regions are 
sharply delined and within the stalled region the flow is violently turbulent. A s  the s ta l led 
region approaches a blade the flow separates  on the suction side, as i t ' r ecedes  from a blade 
the flow reattaches on the pressure side. The s m a l l  amplitude self-induced disturbance involves 
attachment and reattachment of the boundary layer on one s ide  only and the separated region 
does not cross  the channel to the neighboring blade. 

- 

There is no evidence that the s m a l l  amplitude disturbance represents the beginning of a 
large amplitude disturbance. The small amplitude disturbance first OCCUIS at a certain inlet 
angle, continues at about constant amplitude over a narrow range of angle as the inlet angle 
is increased and then is replaced by a more or less uniform s ta l l  a t  higher inlet  angles. Appar-' 
ently the s m a l l  amplitude self induced disturbance does not occur at solidit ies smaller than 
0.5 or so.  The large amplitude propagating stall, in marked contrast, occurs over a very wide 
range of inlet angles and over a wide range of solidit ies (from 1.0 down to 0.07 in one set 
of tesrs). 

. 

' Of the two types of propagating stall ,  that of large amplitude is by far the more important 
in actual turbomachines. The  importance of the small amplitude self-induced disturbance is 
quite indirect. Having demonstrated in a convincing manner that this latter type is the one that 
corresponds to  the linearized theory, there is no further reason for confusing i t  with the large 
amplitude stall, and there is no further temptation to attempt to explain the large amplitude s ta l l  
i n  t e r m s  of linearized theory. Considerable confusion on this matter occurred in the pas t  and 
probably delayed the understanding of s ta l l  propagation appreciably. The confusion was quite 
natural. Self -induced disturbances were observed in turbomachines ; they were difficult to 
describe in detail  but had one easi ly  measurable and precise characteristic, the propagating 
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speed. The linearized theory showed the possibil i ty of self-induced disturbances of any shape 
with one precise  characteristic, the propagating speed. I t  is not surprising that the theory and 
experiment were compared on the bas i s  of the characterist ic speed, ignoring all other details. 
Occasionally the two coincided, usually not, and there was a temptation to introduce additional 
parameters, such as t ime  lags, to bring the theoretical stall speed into coincidenc’e with the 
observed speed. 

BENENSON’S observations of s m a l l  amplitude self-induced disturbances lead to clarification 
of an  unsatisfactory situation. In one s e n s e  it is disappointing; it means that the theory for the 
large amplitude stall will be very much more difficult than was first thought, s ince no lineariz- 
ation of the flow field or of the matching qonditions will be possible. The observations of small 
amplitude self-induced disturbances a l s o  prove that the slope of the loss curve i s  the m o s t  
important cascade characteristic. Until this  was proved, there was s o m e  doubt as to the 
appropriate matching conditions for forced disturbances. Hence the experiments on small  
amplitude stall, in itself a phenomenon of academic importance, have had rather profound 
influence in helping to  understand other unsteady phenomena in axial  turbomachines. 

Since there appeared to be no detailed measurements concerning the behavior of axial  
compressor blade rows when large peripheral variations of the inlet profile a r e  introduced, 
an experimental investigation of this problem was begun somewhat over a year ago by Robert 
KATZ,  a graduate student at the California Institude of Technology. He has  used a large three- 
stage axial  compressor in the investigations ; the detai ls  of this machine and some of the 
instrumentation are described by T. IURA and W.D. RANNIE in reference @I. K A T Z  introduced 
the inlet  disturbances by means of high solidity screens installed about 1/4 compressor diameter 
upstream of the inlet vanes as indicared in Figure 5 .  F G i  :hc cxperimentd :PSU!~S re be presented 
here the screens covered a 90 degree sector of the compressor. The compressor is so arranged 
that total pressure and flow angle measurements could be made downstream of each stationary 
or rotating blade row. Only the circumferential surveys of total pressure will be d i s c u s s e d i n  
detail here. 
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FIG. s - I N S T A L L A T I O N  OF C I R C U M F E R E N T I A L L Y  N O N - U N I  F O R M  B L O C K A G E  
SCREENS A T  I N L E T  O F  T H R E E - S T A G E  COMPRESSOR.  



Utilizing all three s tages  of the compressor a rather severe blockage was introduced at the 
inlet and total pressure surveys were made downstream of each rotor to determine how the 
disturbance developed through the machine. Figure - 6 shows plots of these measurements at the 
mean compressor radius and for a flow coefficient +corresponding approximately to  the design 
value of the machine. The survey downstream of the screen indicates the magnitude of the 
disturbance ; the disturbance corresponds to about one quarter of the dynamic pressure computed 
using the 'Totor t ip speed, that is somewhat more than half of the normal total pressure r ise  
across a stage. The Iarge effect of the disturbance on inlet angles may be appreciated from 
the fact  that  th i s  total pressure loss corresponds to a reduction in the axial  velocity of more 
than 50 per cent.  
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FIG. 6 - T O T A L  P R E S S U R E  V A R I A T I O N S  B E H I N D  E A C H  R O T O R  O F  T H R E E -  
S T A G E  COMPRESSOR R E S U L T I N G  F R O M  W A K E  O F  B L O C K A G E  S C R E E N S .  

Downstream of the first rotor the pattern of the total pressure fluctuation is considerably 
modified but the amplitude is not appreciably reduced. By the t ime the second rotor is traversed . 
the total pressure profile is distinctly smoothed out and it has  very nearly vanished downstream' 

' of the third rotor. With the input total pressure profile given, corresponding total pressure 
profiles may be calculated by applying the single blade row theory successively t o  each blade 
row. While the resul ts  are in qualitative agreement with experiments the significance of such a 
comparison is questionable for two reasons : i) The proper loss and leaving angle deviation 
values to  be used are not yet known with sufficient certainty and ii) The effect of mutual 
interference between adjacent blade rows may be quite strong, as later resul ts  will show, and 
this factor invalidates application of single blade row theory to success ive  s ta l l ing blade 

To observe the influence of mutua! blade row interference upon the total pressure, K A T Z  
obtained total pressure profiles behind the rotor and stator using only one s tage  of the 
compressor with both normal s tage spacing and with the stator located several  blade chords 
downstream of the rotor. With the expanded stage the losses  across  the stator were normal and 
negligible in comparison with the input total pressure variation. In contrast, large total pressure 
losses across  the stator are shown by the surveys of the normal s tage shown in Figure 7 for 

rows. 



- 17- 

I I I I I 

', 

root, mean and tip radii. This  very significant influence of blade spacing comes about in t h e  
following manner : When the stator is far downstream of the rotor, most Gf :he local effects we 
smoothed out by the t ime  the flow reaches the stator. The flow enters the stator at very nearly 
the s a m e  uniform relative angle (although not the same velocity) as it would i n  the absence of 
inlet disturbance. Consequently normal stator losses  appear for the expanded stage. However 
when the rows are  spaced closely, the flow angles  into the stator are  s t i l l  severely distorted 
due to the flow field set up by the non-uniform flow passing through the rotor. The large losses  
of Figure 7 reflect this variation in inlet angle. It is to  be noted a l so  that the effect is consider- 
ably more severe at the blade root than either the meah or tip radii. 
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S T A G E  C O M P R E S S O R  R E S U L T I N G  FROM WAKE O F  B L O C K A G E  S C R E E N .  
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F= 0.40 /- 
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Concentrating €or the moment on losses near the stator root, Figures 8 and 9 respectively 
show the influence of mean flow rase and amplitude of input disturbance of the loss profile. A s  
might be anticipated, increasing the mean flow coefficient to  a value reasonably near the 
design p i n t  reduced the stator stall loss but not markedly. T h i s  fact confirms, in a way, the 
indication that the flow angles induced by the blade row interference are quite large, s ince 
a significant change in the mean angle of attack does not modify the si tuation appreciably. 
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The va.riatic?n of i n p  profile, shown in Figure 3, exerts a quite large but h e a r  influence 
on stator loss although the loss profiles retain a similar shape as their magnitude changes. It 
is somewhat surprising that this linear dependence upon input amplitude holds in sp i te  of the 
fac t  the losses and perturbation angles are really of significant size. 

8/3 Rotor inlet S o  Stator Inlet 8pt Downstream of Stator 

Sp, input 86 Rotor Inlet, a = = ,  No Loss  80 Rotor Inlet, a =m, No LOSS 

a=m a =o  a =m a =o a =m a =o 

0.83 0.59 . 1.00 1.27 O(1.61) 2 . ~ 3  

0.73 a. 65 1.20 0.85 O(1.41) 2.21 

0.65 1.28 1.20 1.04 O(1.41) 4.1 8 
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were carried out for infinite spacing of the rotor and stator, a=-, and for infinitesimal spacing 
of rotor and stator, a=O. I n  each case  the disturbances were computed assuming no loss i n  
either rotor and stator, losses  in the rotor only, and losses  in both rotor and stator.  In each 
reasonable values were chosen for the important parameter, the slope of the pressure loss curve 
although the proper values were not known. The results of these computations a re  summarized 
in the accompanying table. 
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FIG. 9 -  I N F L U E N C E  O F  I N P U T  A M P L I T U D E  ON LOSS DUE T O  S T A T O R  S T A L L .  T O T A L  
P R E S S U R E  VARIATIONS R O T O R  A N D  S T A T O R  O F  S I N G L E  S T A G E  C O M P R E S S O R  
R E S U L T I N G  FROM WAKE O F  T H R E E  D I F F E R E N T  B L O C K A G E  S C R E E N S .  
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Consider first  the total pressure variation downstream of the stator. In the absence of l o s s e s  
the amplitude of losses  falls across  the s tage due to  work added in the rotor. The smoothing 
influence of the s tage is more pronounced when the blade rows are  closely spaced. The reason 
for this is that the pressure field of the stator increases local angles of attack on the rotor, as 
shown in the next column of the table, and consequently the local total pressure r ise  is aug- 
mented when the spacing is close. With losses in both rotor and stator components, the trend is 
clearly reversed. There a r e  two reasons for this change : i)  The stator losses  are  very large 
when the s tages  are closely spaced due to the unfavorable inlet angles induced on them by 
mutual interference. ii) The  proximity of the stator tends to decrease local rotor inlet  angles 
rather than increase them because high stator losses ,  which vary as the square of the approach 
velocity, encourage the fluid to "funnel" into low velocity regions. With the loss coefficients 
assumed, the loss profile for the closely spaced stage is worse when the fluid leaves the s tage 
than when it enters, and the preponderant fraction of this loss may be attributed to stator stall. 
Because of its importance, the factors that induce high inlet angles to the stator may be analyzed 
somewhat. When the rotor and stator are widely spaced there is no induced angle at the stator 
inlet for the reasons discussed previously. Then the induced stator inlet angles  for c lose  
spacing consis t  in two parts, the f low angle perturbations that exist immediately downstream of 
the rotor in  the absence of the stator and the flow angle perturbations induced by the stator and 
by any mutual effects. The  stator inlet angle perturbations that would exist  irrespective of the 
stator a re  given in parentheses in the table. The stator inlet angle perturbation attributable to 
the stator and to mutual effects corresponds to  the difference between the numbers in the las t  
column and the corresponding numbers in parenthesis. It is clear that  the major part  of the 
stator inlet angle perturbation is caused by mutual interference and that the stator l o s s e s  
themselves play an essential  role in inducing these perturbations. In this s e n s e  one may think 
of the stator l o s s e s  a s  being llself induced" to a certain extent. 

The analytical  and experimental investigations carried out so  far concerning forced 
disturbance confirm the observation made previously that the slope of the blade lo s s  
characterist ic is the most influential physical  parameter in the system. Mqreover these results 
demmstrate that the induced stall loss In stator blade rows I s  an essentia! factor in decidisg 
the rate at which a disturbance, introduced at a compressor inlet, will be smoothed out a s  the 
flow progresses through successive stages.  
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